The Model Theory Of Dedekind Algebras
نویسندگان
چکیده
A Dedekind algebra is an ordered pair (B, h) where B is a nonempty set and h is a "similarity transformation" on B. Among the Dedekind algebras is the sequence of positive integers. Each Dedekind algebra can be decomposed into a family of disjointed, countable subalgebras which are called the configurations of the algebra. There are many isomorphic types of configurations. Each Dedekind algebra is associated with a cardinal value function called the confirmation signature which counts the number of configurations in each isomorphism type occurring in the decomposition of the algebra. Two Dedekind algebras are isomorphic if their configuration signatures are identical. I introduce conditions on configuration signatures that are sufficient for characterizing Dedekind algebras uniquely up to isomorphisms in second order logic. I show Dedekind's characterization of the sequence of positive integers to be a consequence of these more general results, and use configuration signatures to delineate homogeneous, universal and homogeneous-universal Dedekind algebras. These delineations establish various results about these classes of Dedekind algebras including existence and uniqueness.
منابع مشابه
ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملA Pseudo Representation Theorem for Various Categories of Relations
It is well-known that, given a Dedekind categoryR the category of (typed) matrices with coefficients from R is a Dedekind category with arbitrary relational sums. In this paper we show that under slightly stronger assumptions the converse is also true. Every atomic Dedekind category R with relational sums and subobjects is equivalent to a category of matrices over a suitable basis. This basis i...
متن کاملA Pseudo Representation Theoremfor Various Categories of Relationsm
It is well-known that, given a Dedekind category R the category of (typed) matrices with coeecients from R is a Dedekind category with arbitrary relational sums. In this paper we show that under slightly stronger assumptions the converse is also true. Every atomic Dedekind category R with relational sums and subobjects is equivalent to a category of matrices over a suitable basis. This basis is...
متن کاملCompletions of µ-algebras
A μ-algebra is a model of a first order theory that is an extension of the theory of bounded lattices, that comes with pairs of terms (f, μx.f) where μx.f is axiomatized as the least prefixed point of f , whose axioms are equations or equational implications. Standard μ-algebras are complete meaning that their lattice reduct is a complete lattice. We prove that any non trivial quasivariety of μ...
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کامل